Astronomi
Nebula Kepiting, sekumpulan sisa-sisa supernova. Citra diabadikan oleh teleskop Hubble. |
arifuddinali.blogspot.com - Astronomi ialah cabang ilmu alam yang melibatkan pengamatan benda-benda langit (seperti halnya bintang, planet, komet, nebula, gugus bintang, atau galaksi) serta fenomena-fenomena alam yang terjadi di luar atmosfer Bumi (misalnya radiasi latar belakang kosmik (radiasi CMB)). Ilmu ini secara pokok mempelajari pelbagai sisi dari benda-benda langit — mirip asal-usul, sifat fisika/kimia, meteorologi, dan gerak — dan bagaimana pengetahuan akan benda-benda tersebut menjelaskan pembentukan dan perkembangan alam semesta.
Astronomi sebagai ilmu ialah salah satu yang tertua, sebagaimana diketahui dari artifak-artifak astronomis yang berasal dari era prasejarah; contohnya monumen-monumen dari Mesir dan Nubia, atau Stonehenge yang berasal dari Britania. Orang-orang dari peradaban-peradaban awal semacam Babilonia, Yunani, Cina, India, dan Maya juga didapati telah melaksanakan pengamatan yang metodologis atas langit malam. Akan tetapi meskipun mempunyai sejarah yang panjang, astronomi gres sanggup berubah menjadi cabang ilmu pengetahuan modern melalui penemuan teleskop.
Cukup banyak cabang-cabang ilmu yang pernah turut disertakan sebagai adegan dari astronomi, dan apabila diperhatikan, sifat cabang-cabang ini sangat beragam: dari astrometri, pelayaran berbasis angkasa, astronomi observasional, hingga dengan penyusunan kalender dan astrologi. Meski demikian, sampaumur ini astronomi profesional dianggap identik dengan astrofisika.
Pada kurun ke-20, astronomi profesional terbagi menjadi dua cabang: astronomi observasional dan astronomi teoretis. Yang pertama melibatkan pengumpulan data dari pengamatan atas benda-benda langit, yang kemudian akan dianalisis menggunakan prinsip-prinsip dasar fisika. Yang kedua terpusat pada upaya pengembangan model-model komputer/analitis guna menjelaskan sifat-sifat benda-benda langit serta fenomena-fenomena alam lainnya. Adapun kedua cabang ini bersifat komplementer — astronomi teoretis berusaha untuk menerangkan hasil-hasil pengamatan astronomi observasional, dan astronomi observasional kemudian akan mencoba untuk membuktikan kesimpulan yang dibentuk oleh astronomi teoretis.
Astronom-astronom amatir telah dan terus berperan penting dalam banyak penemuan-penemuan astronomis, menjadikan astronomi salah satu dari hanya sedikit ilmu pengetahuan di mana tenaga amatir masih memegang tugas aktif, terutama pada penemuan dan pengamatan fenomena-fenomena sementara.
Astronomi harus dibedakan dari astrologi, yang merupakan kepercayaan bahwa nasib dan urusan insan berhubungan dengan letak benda-benda langit mirip bintang atau rasinya. Memang betul bahwa dua bidang ini mempunyai asal undangan yang sama, namun pada ketika ini keduanya sangat berbeda.
Astronomi sebagai ilmu ialah salah satu yang tertua, sebagaimana diketahui dari artifak-artifak astronomis yang berasal dari era prasejarah; contohnya monumen-monumen dari Mesir dan Nubia, atau Stonehenge yang berasal dari Britania. Orang-orang dari peradaban-peradaban awal semacam Babilonia, Yunani, Cina, India, dan Maya juga didapati telah melaksanakan pengamatan yang metodologis atas langit malam. Akan tetapi meskipun mempunyai sejarah yang panjang, astronomi gres sanggup berubah menjadi cabang ilmu pengetahuan modern melalui penemuan teleskop.
Cukup banyak cabang-cabang ilmu yang pernah turut disertakan sebagai adegan dari astronomi, dan apabila diperhatikan, sifat cabang-cabang ini sangat beragam: dari astrometri, pelayaran berbasis angkasa, astronomi observasional, hingga dengan penyusunan kalender dan astrologi. Meski demikian, sampaumur ini astronomi profesional dianggap identik dengan astrofisika.
Pada kurun ke-20, astronomi profesional terbagi menjadi dua cabang: astronomi observasional dan astronomi teoretis. Yang pertama melibatkan pengumpulan data dari pengamatan atas benda-benda langit, yang kemudian akan dianalisis menggunakan prinsip-prinsip dasar fisika. Yang kedua terpusat pada upaya pengembangan model-model komputer/analitis guna menjelaskan sifat-sifat benda-benda langit serta fenomena-fenomena alam lainnya. Adapun kedua cabang ini bersifat komplementer — astronomi teoretis berusaha untuk menerangkan hasil-hasil pengamatan astronomi observasional, dan astronomi observasional kemudian akan mencoba untuk membuktikan kesimpulan yang dibentuk oleh astronomi teoretis.
Astronom-astronom amatir telah dan terus berperan penting dalam banyak penemuan-penemuan astronomis, menjadikan astronomi salah satu dari hanya sedikit ilmu pengetahuan di mana tenaga amatir masih memegang tugas aktif, terutama pada penemuan dan pengamatan fenomena-fenomena sementara.
Astronomi harus dibedakan dari astrologi, yang merupakan kepercayaan bahwa nasib dan urusan insan berhubungan dengan letak benda-benda langit mirip bintang atau rasinya. Memang betul bahwa dua bidang ini mempunyai asal undangan yang sama, namun pada ketika ini keduanya sangat berbeda.
Leksikologi
Kata astronomi berasal dari bahasa Yunani, yaitu kata astron (ἄστρον, "bintang") yang kemudian diberi akhiran -nomi dari nomos (νόμος, "hukum" atau "budaya"). Maka secara harafiah ia bermakna "hukum/budaya bintang-bintang".Penggunaan istilah "astronomi" dan "astrofisika"
Secara umum baik "astronomi" maupun "astrofisika" boleh digunakan untuk menyebut ilmu yang sama. Apabila hendak merujuk ke definisi-definisi kamus yang baku, "astronomi" bermakna "penelitian benda-benda langit dan materi di luar atmosfer Bumi serta sifat-sifat fisika dan kimia benda-benda dan materi tersebut" sedang "astrofisika" ialah cabang dari astronomi yang berurusan dengan "tingkah laku, sifat-sifat fisika, serta proses-proses dinamis dari benda-benda dan fenomena-fenomena langit".Dalam kasus-kasus tertentu, contohnya pada pembukaan buku The Physical Universe oleh Frank Shu, "astronomi" boleh dipergunakan untuk sisi kualitatif dari ilmu ini, sedang "astrofisika" untuk sisi lainnya yang lebih berorientasi fisika. Namun, penelitian-penelitian astronomi modern kebanyakan berurusan dengan topik-topik yang berkenaan dengan fisika, sehingga bisa saja kita menyampaikan bahwa astronomi modern ialah astrofisika. Banyak badan-badan penelitian yang, dalam memutuskan menggunakan istilah yang mana, hanya bergantung dari apakah secara sejarah mereka bekerjasama dengan departemen-departemen fisika atau tidak. Astronom-astronom profesional sendiri banyak yang mempunyai gelar di bidang fisika. Untuk ilustrasi lebih lanjut, salah satu jurnal ilmiah terkemuka pada cabang ilmu ini berjulukan Astronomy and Astrophysics (Astronomi dan Astrofisika).
Sejarah
Peta angkasa dari kurun ke-17, karya kartografer Belanda Frederik de Wit. |
Sebelum ditemukannya peralatan mirip teleskop, penelitian harus dilakukan dari atas bangunan-bangunan atau dataran yang tinggi, semua dengan mata telanjang. Seiring dengan berkembangnya peradaban, terutama di Mesopotamia, Cina, Mesir, Yunani, India, dan Amerika Tengah, orang-orang mulai membangun observatorium dan gagasan-gagasan mengenai sifat-sifat semesta mulai ramai diperiksa. Umumnya, astronomi awal disibukkan dengan pemetaan letak-letak bintang dan planet (sekarang disebut astrometri), kegiatan yang alhasil melahirkan teori-teori wacana pergerakan benda-benda langit dan pemikiran-pemikiran filosofis untuk menjelaskan asal undangan Matahari, Bulan, dan Bumi. Bumi kemudian dianggap sebagai sentra jagat raya, sedang Matahari, Bulan, dan bintang-bintang berputar mengelilinginya; model semacam ini dikenal sebagai model geosentris, atau sistem Ptolemaik (dari nama astronom Romawi-Mesir Ptolemeus).
Jam Matahari Yunani, dari Ai-Khanoum (sekarang di Afghanistan), kurun 3-2 SM. |
Di Eropa sendiri selama Abad Pertengahan astronomi sempat mengalami kebuntuan dan stagnansi. Sebaliknya, perkembangan pesat terjadi di dunia Islam dan beberapa peradaban lainnya, ditandai dengan dibangunnya observatorium-observatorium di belahan dunia sana pada awal kurun ke-9. Pada tahun 964, astronom Persia Al-Sufi menemukan Galaksi Andromeda (galaksi terbesar di Grup Lokal) dan mencatatnya dalam Book of Fixed Stars (Kitab Suwar al-Kawakib). Supernova SN 1006, ledakan bintang paling terang dalam catatan sejarah, berhasil diamati oleh astronom Mesir Ali bin Ridwan dan sekumpulan astronom Cina yang terpisah pada tahun yang sama (1006 M). Astronom-astronom besar dari era Islam ini kebanyakan berasal dari Persia dan Arab, termasuk Al-Battani, Tsabit bin Qurrah, Al-Sufi, Ibnu Balkhi, Al-Biruni, Al-Zarqali, Al-Birjandi, serta astronom-astronom dari observatorium-observatorium di Maragha dan Samarkand. Melalui era inilah nama-nama bintang yang berdasarkan bahasa Arab diperkenalkan. Reruntuhan-reruntuhan di Zimbabwe Raya dan Timbuk tujuga kemungkinan sempat mempunyai bangunan-bangunan observatorium — melemahkan keyakinan sebelumnya bahwa tidak ada pengamatan astronomis di kawasan sub-Sahara sebelum era kolonial.
Revolusi ilmiah
Sketsa Bulan oleh Galileo. Melalui pengamatan, diketahui bahwa permukaan Bulan berbukit-bukit. |
Pada Zaman Renaisans, Copernicus menyusun model Tata Surya heliosentris, model yang kemudian dibela dari kontroversi, dikembangkan, dan dikoreksi oleh Galileo dan Kepler. Galileo berinovasi dengan teleskop guna mempertajam pengamatan astronomis, sedang Kepler berhasil menjadi ilmuwan pertama yang menyusun secara sempurna dan mendetail pergerakan planet-planet dengan Matahari sebagai pusatnya. Meski demikian, ia gagal memformulasikan teori untuk menjelaskan hukum-hukum yang ia tuliskan, hingga alhasil Newton (yang juga menemukan teleskop refleksi untuk pengamatan langit) menjelaskannya melalui dinamika angkasa dan aturan gravitasi.
Seiring dengan semakin baiknya ukuran dan kualitas teleskop, semakin banyak pula penemuan-penemuan lebih lanjut yang terjadi. Melalui teknologi ini Lacaille berhasil menyebarkan katalog-katalog bintang yang lebih lengkap; perjuangan serupa juga dilakukan oleh astronom Jerman-Inggris Herschel dengan memproduksi katalog-katalog nebula dan gugusan. Pada tahun 1781 ia menemukan planet Uranus, planet pertama yang ditemui di luar planet-planet klasik. Pengukuran jarak menuju sebuah bintang pertama kali dipublikasikan pada 1838 oleh Bessel, yang pada ketika itu melakukannya melalui pengukuran paralaks dari 61 Cygni.
Abad ke-18 hingga kurun ke-19 pertama diwarnai oleh penelitian atas masalah tiga-badan oleh Euler, Clairaut, dan D'Alembert; penelitian yang menghasilkan metode prediksi yang lebih sempurna untuk pergerakan Bulan dan planet-planet. Pekerjaan ini dipertajam oleh Lagrange dan Laplace, sehingga memungkinkan ilmuwan untuk memperkirakan massa planet dan satelit lewat perturbasi/usikannya. Penemuan spektroskop dan fotografi kemudian mendorong kemajuan penelitian lagi: pada 1814-1815, Fraunhoffer menemukan lebih kurang 600 pita spektrum pada Matahari, dan pada 1859 Kirchhoff alhasil bisa menjelaskan fenomena ini dengan mengatribusikannya pada keberadaan unsur-unsur. Pada masa ini bintang-bintang dikonfirmasikan sebagai Matahari-matahari lain yang lebih jauh letaknya, namun dengan perbedaan-perbedaan pada suhu, massa, dan ukuran.
Baru pada kurun ke-20 Galaksi Bima Sakti (di mana Bumi dan Matahari berada) bisa dibuktikan sebagai kelompok bintang yang terpisah dari kelompok-kelompok bintang lainnya. Dari pengamatan-pengamatan yang sama disimpulkan pula bahwa ada galaksi-galaksi lain di luar Bima Sakti dan bahwa alam semesta terus mengembang, lantaran galaksi-galaksi tersebut terus menjauh dari galaksi kita. Astronomi modern juga menemukan dan berusaha menjelaskan benda-benda langit yang ajaib mirip kuasar, pulsar, blazar, galaksi-galaksi radio, lubang hitam, dan bintang neutron. Kosmologi fisik maju dengan pesat sepanjang kurun ini: model Dentuman Besar (Big Bang) misalnya, telah didukung oleh bukti-bukti astronomis dan fisika yang berpengaruh (antara lain radiasi CMB, aturan Hubble, dan ketersediaan kosmologis unsur-unsur).
Astronomi observasional
Seperti diketahui, astronomi memerlukan informasi wacana benda-benda langit, dan sumber informasi yang paling utama sejauh ini ialah radiasi elektromagnetik, atau lebih spesifiknya, cahaya tampak. Astronomi observasional bisa dibagi lagi berdasarkan daerah-daerah spektrum elektromagnetik yang diamati: sebagian dari spektrum tersebut bisa diteliti melalui permukaan Bumi, sementara adegan lain hanya bisa dijangkau dari ketinggian tertentu atau bahkan hanya dari ruang angkasa. Keterangan lebih lengkap wacana pembagian-pembagian ini bisa dilihat di bawah:Astronomi radio
Observatorium Very Large Array (VLA) di New Mexico, AS: teladan teleskop radio |
Gelombang radio bisa dihasilkan oleh benda-benda astronomis melalui pancaran termal, namun sebagian besar pancaran radio yang diamati dari Bumi ialah berupa radiasi sinkrotron, yang diproduksi ketika elektron-elektron berkisar di sekeliling medan magnet. Sejumlah garis spektrum yang dihasilkan dari gas antarbintang (misalnya garis spektrum hidrogen pada 21 cm) juga sanggup diamati pada panjang gelombang radio.
Beberapa teladan benda-benda yang bisa diamati oleh astronomi radio: supernova, gas antarbintang, pulsar, dan inti galaksi aktif (AGN - active galactive nucleus).
Astronomi inframerah
Astronomi inframerah melibatkan pendeteksian beserta analisis atas radiasi inframerah (radiasi di mana panjang gelombangnya melebihi cahaya merah). Sebagian besar radiasi jenis ini diserap oleh atmosfer Bumi, kecuali yang panjang gelombangnya tidak berbeda terlampau jauh dengan cahaya merah yang tampak. Oleh lantaran itu, observatorium yang hendak mengamati radiasi inframerah harus dibangun di tempat-tempat yang tinggi dan tidak lembap, atau malah di ruang angkasa.Spektrum ini bermanfaat untuk mengamati benda-benda yang terlalu hambar untuk memancarkan cahaya tampak, contohnya planet-planet atau cakram-cakram pengitar bintang. Apabila radiasinya mempunyai gelombang yang cenderung lebih panjang, ia sanggup pula membantu para astronom mengamati bintang-bintang muda pada awan-awan molekul dan inti-inti galaksi — lantaran radiasi mirip itu bisa menembus debu-debu yang menutupi dan mengaburkan pengamatan astronomis. Astronomi inframerah juga bisa dimanfaatkan untuk mempelajari struktur kimia benda-benda angkasa, lantaran beberapa molekul mempunyai pancaran yang berpengaruh pada panjang gelombang ini. Salah satu kegunaannya yaitu mendeteksi keberadaan air pada komet-komet.
Astronomi optikal
Cahaya tampak sebagaimana diketahui mempunyai panjang dari 4.000 Å hingga 7.000 Å (400-700 nm). Namun, alat-alat pengamatan yang digunakan untuk mengamati panjang gelombang demikian digunakan pula untuk mengamati gelombang hampir-ultraungu dan hampir-inframerah.
Astronomi ultraungu
Ultraungu yaitu radiasi elektromagnetik dengan panjang gelombang lebih kurang 100 hingga 3.200 Å (10-320 nm). Cahaya dengan panjang mirip ini diserap oleh atmosfer Bumi, sehingga untuk mengamatinya harus dilakukan dari lapisan atmosfer adegan atas, atau dari luar atmosfer (ruang angkasa). Astronomi jenis ini cocok untuk mempelajari radiasi termal dan garis-garis spektrum pancaran dari bintang-bintang biru yang bersuhu sangat tinggi (klasifikasi OB), lantaran bintang-bintang mirip itu sangat cemerlang radiasi ultraungunya — penelitian mirip ini sering dilakukan dan meliputi bintang-bintang yang berada di galaksi-galaksi lain. Selain bintang-bintang OB, benda-benda langit yang kerap diamati melalui astronomi cabang ini antara lain nebula-nebula planet, sisa-sisa supernova, atau inti-inti galaksi aktif. Diperlukan penyetelan yang berbeda untuk keperluan mirip demikian lantaran cahayanya praktis tertelan oleh debu-debu antarbintang.Astronomi sinar-X
Benda-benda bisa memancarkan cahaya berpanjang gelombang sinar-X melalui pancaran sinkrotron (berasal dari elektron-elektron yang berkisar di sekeliling medan magnet) atau melalui pancaran termal gas pekat dan gas encer pada 107 K. Sinar-X juga diserap oleh atmosfer, sehingga pengamatan harus dilakukan dari atas balon, roket, atau satelit penelitian. Sumber-sumber sinar-X antara lain bintang biner sinar-X (X-ray binary), pulsar, sisa-sisa supernova, galaksi elips, formasi galaksi, serta inti galaksi aktif.Astronomi sinar-gamma
Astronomi sinar-gamma mempelajari benda-benda astronomi pada panjang gelombang paling pendek (sinar-gamma). Sinar-gamma bisa diamati secara pribadi melalui satelit-satelit mirip Observatorium Sinar-Gamma Compton (CGRO), atau dengan jenis teleskop khusus yang disebut teleskop Cherenkov (IACT). Teleskop jenis itu sebetulnya tidak mendeteksi sinar-gamma, tapi bisa mendeteksi percikan cahaya tampak yang dihasilkan dari proses perembesan sinar-gamma oleh atmosfer.Kebanyakan sumber sinar-gamma hanyalah berupa ledakan sinar-gamma, yang hanya menghasilkan sinar tersebut dalam hitungan milisekon hingga beberapa puluh detik saja. Sumber yang permanen dan tidak sementara hanya sekitar 10% dari total jumlah sumber, contohnya sinar-gamma dari pulsar, bintang neutron, atau inti galaksi aktif dan kandidat-kandidat lubang hitam.
Cabang-cabang yang tidak berdasarkan panjang gelombang
Sejumlah fenomena jarak jauh lain yang berbentuk selain radiasi elektromagnetik sanggup diamati dari Bumi. Ada cabang berjulukan astronomi neutrino, di mana para astronom menggunakan fasilitas-fasilitas bawah tanah (misalnya SAGE, GALLEX, atau Kamioka II/III) untuk mendeteksi neutrino, sebentuk partikel dasar yang jamaknya berasal dari Matahari atau ledakan-ledakan supernova. Ketika sinar-sinar kosmik memasuki atmosfer Bumi, partikel-partikel berenergi tinggi yang menyusunnya akan meluruh atau terserap, dan partikel-partikel hasil peluruhan ini bisa dideteksi di observatorium. Di masa yang akan datang, diharapkan akan ada detektor neutrino yang peka terhadap partikel-partikel yang lahir dari benturan sinar-sinar kosmik dan atmosfer.Terdapat pula cabang gres yang menggunakan detektor-detektor gelombang gravitasional untuk mengumpulkan data wacana benda-benda rapat: astronomi gelombang gravitasional. Observatorium-observatorium untuk bidang ini sudah mulai dibangun, contohnya observatorium LIGO di Louisiana, AS. Tetapi astronomi mirip ini sulit, lantaran gelombang gravitasional amat sukar untuk dideteksi.
Ahli-ahli astronomi planet juga banyak yang mengamati fenomena-fenomena angkasa secara langsung, yaitu melalui wahana-wahana antariksa serta misi-misi pengumpulan sampel. Beberapa hanya bekerja dengan sensor jarak jauh untuk mengumpulkan data, tapi beberapa lainnya melibatkan pendaratan —dengan kendaraan antariksa yang bisa bereksperimen di atas permukaan. Metode-metode lain contohnya detektor material terbenam atau melaksanakan eksperimen pribadi terhadap sampel yang dibawa ke Bumi sebelumnya.
Astrometri dan mekanika benda langit
Pengukuran letak benda-benda langit, mirip disebutkan, ialah salah satu cabang astronomi (dan bahkan sains) yang paling tua. Kegiatan-kegiatan mirip pelayaran atau penyusunan kalender memang sangat membutuhkan pengetahuan yang akurat mengenai letak Matahari, Bulan, planet-planet, serta bintang-bintang di langit.Dari proses pengukuran mirip ini dihasilkan pemahaman yang baik sekali wacana usikan gravitasi dan pada alhasil astronom-astronom sanggup menentukan letak benda-benda langit dengan sempurna pada masa kemudian dan masa depan — cabang astronomi yang mendalami bidang ini dikenal sebagai mekanika benda langit. Dewasa ini penjejakan atas benda-benda yang akrab dengan Bumi juga memungkinkan prediksi-prediksi akan pertemuan dekat, atau bahkan benturan.
Kemudian terdapat pengukuran paralaks bintang. Pengukuran ini sangat penting lantaran memberi nilai basis dalam metode tangga jarak kosmik; melalui metode ini ukuran dan skala alam semesta bisa diketahui. Pengukuran paralaks bintang yang relatif lebih akrab juga bisa digunakan sebagai basis sewenang-wenang untuk ciri-ciri bintang yang lebih jauh, lantaran ciri-ciri di antara mereka sanggup dibandingkan. Kinematika mereka kemudian bisa kita susun lewat pengukuran kecepatan radial serta gerak diri masing-masing. Hasil-hasil astrometri sanggup pula dimanfaatkan untuk pengukuran materi gelap di dalam galaksi.
Selama dekade 1990-an, teknik pengukuran goyangan bintang dalam astrometri digunakan untuk mendeteksi keberadaan planet-planet luar surya yang mengelilingi bintang-bintang di akrab Matahari kita.
Astronomi teoretis
Terdapat banyak jenis-jenis metode dan peralatan yang bisa dimanfaatkan oleh seorang astronom teoretis, antara lain model-model analitik (misalnya politrop untuk memperkirakan sikap sebuah bintang) dan simulasi-simulasi numerik komputasional; masing-masing dengan keunggulannya sendiri. Model-model analitik umumnya lebih baik apabila peneliti hendak mengetahui pokok-pokok duduk masalah dan mengamati apa yang terjadi secara garis besar; model-model numerik bisa mengungkap keberadaan fenomena-fenomena serta efek-efek yang tidak praktis terlihat.Para teoris berupaya untuk membuat model-model teoretis dan menyimpulkan akibat-akibat yang sanggup diamati dari model-model tersebut. Ini akan membantu para pengamat untuk mengetahui data apa yang harus dicari untuk membantah suatu model, atau memutuskan mana yang benar dari model-model alternatif yang bertentangan. Para teoris juga akan mencoba menyusun model gres atau memperbaiki model yang sudah ada apabila ada data-data gres yang masuk. Apabila terjadi pertentangan/inkonsistensi, kecenderungannya ialah untuk membuat modifikasi minimal pada model yang bersangkutan untuk mengakomodir data yang sudah didapat. Kalau pertentangannya terlalu banyak, modelnya bisa dibuang dan tidak digunakan lagi.
Topik-topik yang dipelajari oleh astronom-astronom teoretis antara lain: dinamika dan evolusi bintang-bintang; formasi galaksi; struktur skala besar materi di alam semesta; asal undangan sinar kosmik; relativitas umum; dan kosmologi fisik (termasuk kosmologi dawai dan fisika astropartikel). Relativitas astrofisika digunakan untuk mengukur ciri-ciri struktur skala besar, di mana ada tugas yang besar dari gaya gravitasi; juga sebagai dasar dari fisika lubang hitam dan penelitian gelombang gravitasional.
Beberapa model/teori yang sudah diterima dan dipelajari luas yaitu teori Dentuman Besar, inflasi kosmik, materi gelap, dan teori-teori fisika fundamental. Kelompok model dan teori ini sudah diintegrasikan dalam model Lambda-CDM.
Cabang-cabang spesifik
Astronomi surya
Citra ultraviolet dari fotosfer aktif Matahari, hasil tangkapan teleskop TRACE oleh NASA. |
Luminositas Matahari terus bertambah berpengaruh secara tetap sepanjang hidupnya, dan semenjak pertama kali menjadi bintang deret utama sudah bertambah sebanyak 40%. Matahari juga telah tercatat melaksanakan perubahan periodik dalam luminositas, sesuatu yang bisa mengakibatkan akibat-akibat yang signifikan atas kehidupan di atas Bumi. Misalnya periode minimum Maunder, yang hingga mengakibatkan fenomena zaman es kecil pada Abad Pertengahan.
Permukaan luar Matahari yang bisa kita lihat disebut fotosfer. Di atasnya ada lapisan tipis yang biasanya tidak terlihat lantaran terangnya fotosfer, yaitu kromosfer. Di atasnya lagi ada lapisan transisi di mana suhu bisa naik secara cepat, dan di atasnya terdapatlah korona yang sangat panas.
Di tengah-tengah Matahari ialah kawasan inti; ada tingkat suhu dan tekanan yang cukup di sini sehingga fusi nuklir sanggup terjadi. Di atasnya terdapat zona radiatif; di sini plasma akan menghantarkan panas melalui proses radiasi. Di atas zona radiatif ialah zona konvektif; materi gas di zona ini akan menghantarkan energi sebagian besar lewat pergerakan materi gas itu sendiri. Zona inilah yang dipercaya sebagai sumber acara magnetis penghasil bintik-bintik Matahari.
Terdapat angin surya berupa partikel-partikel plasma yang bertiup keluar dari Matahari secara terus-menerus hingga mencapai titik heliopause. Angin ini bertemu dengan magnetosfer Bumi dan membentuk sabuk-sabuk radiasi Van Allen dan — di mana garis-garis medan magnet Bumi turun menujur atmosfer — menghasilkan aurora.
Ilmu keplanetan
Cabang astronomi ini meneliti susunan planet, bulan, planet katai, komet, asteroid, serta benda-benda langit lain yang mengelilingi bintang, terutama Matahari, walau ilmu ini meliputi juga planet-planet luar surya. Tata Surya kita sendiri sudah dipelajari secara mendalam — pertama-tama melalui teleskop dan kemudian menggunakan wahana-wahana antariksa — sehingga pemahaman kini mengenai formasi dan evolusi sistem keplanetan ini sudah sangat baik, walaupun masih ada penemuan-penemuan gres yang terjadi. Tata Surya dibagi menjadi beberapa kelompok: planet-planet adegan dalam, sabuk asteroid, dan planet-planet adegan luar. Planet-planet adegan dalam ialah planet-planet bersifat kebumian yaitu Merkurius, Venus, Bumi dan Mars. Planet-planet adegan luar ialah raksasa-raksasa gas Tata Surya yaitu Yupiter, Saturnus, Uranus, dan Neptunus. Apabila kita pergi lebih jauh lagi, maka akan ditemukan benda-benda trans-Neptunus: pertama sabuk Kuiper dan alhasil awan Oort yang bisa membentang hingga satu tahun cahaya.
Terbentuknya planet-planet bermula pada sebuah cakram protoplanet yang mengitari Matahari pada periode-periode awalnya. Dari cakram ini terwujudlah gumpalan-gumpalan materi melalui proses yang melibatkan tarikan gravitasi, benturan, dan akresi; gumpalan-gumpalan ini kemudian lama-kelamaan menjadi kumpulan protoplanet. Karena tekanan radiasi dari angin surya terus mendorong materi-materi yang belum menggumpal, hanya planet-planet yang massanya cukup besar yang bisa mempertahankan atmosfer berbentuk gas. Planet-planet muda ini terus menyapu dan memuntahkan materi-materi yang tersisa, menghasilkan sebuah periode penghancuran yang hebat. Sisa-sisa periode ini bisa dilihat melalui banyaknya kawah-kawah gesekan di permukaan Bulan. Adapun dalam jangka waktu ini sebagian dari protoplanet-protoplanet yang ada mungkin bertabrakan satu sama lain; kemungkinan besar gesekan mirip itulah yang melahirkan Bulan kita.
Ketika suatu planet mencapai massa tertentu, materi-materi dengan massa jenis yang berlainan mulai saling memisahkan diri dalam proses yang disebut diferensiasi planet. Proses demikian bisa menghasilkan inti yang berbatu-batu atau terdiri dari materi-materi logam, diliputi oleh lapisan mantel dan kemudian permukaan luar. Inti planet ini bisa terbagi menjadi daerah-daerah yang padat dan cair, dan beberapa bisa menghasilkan medan magnet mereka sendiri, sehingga planet sanggup terlindungi dari angin surya.
Panas di adegan dalam sebuah planet atau bulan tiba dari benturan yang dihasilkan sendiri oleh planet/bulan tersebut, atau oleh materi-materi radioaktif (misalnya uranium, torium, atau 26Al), atau pemanasan pasang surut. Beberapa planet dan bulan berhasil mengumpulkan cukup panas untuk menjalankan proses-proses geologis mirip vulkanisme dan aktivitas-aktivitas tektonik. Apabila planet/bulan tersebut juga mempunyai atmosfer, maka abrasi pada permukaan (melalui angin atau air) juga sanggup terjadi. Planet/bulan yang lebih kecil dan tanpa pemanasan pasang surut akan menjadi hambar lebih cepat dan kegiatan-kegiatan geologisnya akan berakhir, terkecuali pembentukan kawah-kawah tabrakan.
Untuk memahami alam semesta, penelitian atas bintang-bintang dan bagaimana mereka berevolusi sangatlah fundamental. Astrofisika yang berkenaan dengan bintang sendiri bisa diketahui baik lewat segi pengamatan maupun segi teoretis, serta juga melalui simulasi komputer.
Bintang terbentuk pada awan-awan molekul raksasa, yaitu daerah-daerah yang padat akan debu dan gas. Ketika kehilangan kestabilannya, serpihan-serpihan dari awan-awan ini bisa runtuh di bawah gaya gravitasi dan membentuk protobintang. Apabila adegan pada dasarnya mencapai kepadatan dan suhu tertentu, fusi nuklir akan dipicu dan akan terbentuklah sebuah bintang deret utama.
Nyaris semua unsur yang lebih berat dari hidrogen dan helium merupakan hasil dari proses yang terjadi di dalam inti bintang-bintang.
Ciri-ciri yang akan dimiliki oleh suatu bintang secara garis besar ditentukan oleh massa awalnya: semakin besar massanya, maka semakin tinggi pula luminositasnya, dan semakin cepat pula ia akan menghabiskan materi bakar hidrogen pada inti. Lambat laun, materi bakar hidrogen ini akan diubah menjadi helium, dan bintang yang bersangkutan akan mulai berevolusi. Untuk melaksanakan fusi helium, dibutuhkan suhu inti yang lebih tinggi, oleh lantaran itu pada dasarnya akan semakin padat dan ukuran bintang pun berlipat ganda — bintang ini telah menjadi sebuah raksasa merah. Fase raksasa merah ini relatif singkat, hingga materi bakar heliumnya juga sudah habis terpakai. Kalau bintang tersebut mempunyai massa yang sangat besar, maka akan dimulai fase-fase evolusi di mana ia semakin mengecil secara bertahap, lantaran terpaksa melaksanakan fusi nuklir terhadap unsur-unsur yang lebih berat.
Adapun nasib simpulan sebuah bintang bergantung pula pada massa. Jika massanya lebih dari sekitar delapan kali lipat Matahari kita, maka gravitasi pada dasarnya akan runtuh dan menghasilkan sebuah supernova; kalau tidak, akan menjadi nebula planet, dan terus berevolusi menjadi sebuah katai putih. Yang tersisa sehabis supernova meletus ialah sebuah bintang neutron yang sangat padat, atau, apabila materi sisanya mencapai tiga kali lipat massa Matahari, lubang hitam. Bintang-bintang biner yang saling berdekatan evolusinya bisa lebih rumit lagi, misalnya, bisa terjadi pemindahan massa ke arah bintang rekannya yang sanggup mengakibatkan supernova.
Nebula-nebula planet dan supernova-supernova dibutuhkan untuk proses distribusi logam di medium antarbintang; kalau tidak demikian, seluruh bintang-bintang gres (dan juga sistem-sistem planet mereka) hanya akan tersusun dari hidrogen dan helium saja.
Tata Surya kita beredar di dalam Bima Sakti, sebuah galaksi spiral berpalang di Grup Lokal. Ia merupakan salah satu yang paling menonjol di kumpulan galaksi tersebut. Bima Sakti merotasi materi-materi gas, debu, bintang, dan benda-benda lain, semuanya berkumpul tanggapan tarikan gaya gravitasi bersama. Bumi sendiri terletak pada sebuah lengan galaksi berdebu yang ada di adegan luar, sehingga banyak daerah-daerah Bima Sakti yang tidak terlihat.
Pada sentra galaksi ialah adegan inti, semacam tonjolan berbentuk mirip batang; diyakini bahwa terdapat sebuah lubang hitam supermasif di adegan sentra ini. Bagian ini dikelilingi oleh empat lengan utama yang melingkar dari tengah menuju arah luar, dan isinya kaya akan fenomena-fenomena pembentukan bintang, sehingga memuat banyak bintang-bintang muda (metalisitas populasi I). Cakram ini kemudian diliputi oleh cincin galaksi yang berisi bintang-bintang yang lebih bau tanah (metalisitas populasi II) dan juga gugusan-gugusan bintang berbentuk bola (globular), yaitu semacam kumpulan-kumpulan bintang yang relatif lebih padat.
Daerah di antara bintang-bintang disebut medium antarbintang, yaitu kawasan dengan kandungan materi yang jarang — bagian-bagiannya yang relatif terpadat ialah awan-awan molekul berisi hidrogen dan unsur lainnya, tempat di mana banyak bintang gres akan lahir. Awalnya akan terbentuk sebuah inti pra-bintang atau nebula gelap yang merapat dan kemudian runtuh (dalam volume yang ditentukan oleh panjang Jeans) untuk membangun protobintang.
Ketika sudah banyak bintang besar yang muncul, mereka akan mengubah awan molekul menjadi awan kawasan H II, yaitu awan dengan gas berpijar dan plasma. Pada alhasil angin serta ledakan supernova yang berasal dari bintang-bintang ini akan memencarkan awan yang tersisa, biasanya menghasilkan sebuah (atau lebih dari satu) formasi bintang terbuka yang baru. Gugusan-gugusan ini lambat laun berpendar, dan bintang-bintangnya bergabung dengan Bima Sakti.
Sejumlah penelitian kinematika berkenaan dengan materi-materi di Bima Sakti (dan galaksi lainnya) memperlihatkan bahwa materi-materi yang tampak massanya kurang dari massa seluruh galaksi. Ini menunjukan terdapat apa yang disebut materi gelap yang bertanggung jawab atas sebagian besar massa keseluruhan, tapi banyak hal yang belum diketahui mengenai materi misterius ini.
Penelitian benda-benda yang berada di luar galaksi kita — astronomi ekstragalaksi — merupakan cabang yang mempelajari formasi dan evolusi galaksi-galaksi, morfologi dan penjabaran mereka, serta pengamatan atas galaksi-galaksi aktif beserta grup-grup dan gugusan-gugusan galaksi. Ini, terutama yang disebutkan belakangan, penting untuk memahami struktur alam semesta dalam skala besar.
Kebanyakan galaksi akan membentuk wujud-wujud tertentu, sehingga pengklasifikasiannya bisa disusun berdasarkan wujud-wujud tersebut. Biasanya, mereka dibagi-bagi menjadi galaksi-galaksi spiral, elips, dan tak beraturan.
Persis mirip namanya, galaksi elips berbentuk mirip elips. Bintang-bintang berputar pata garis edarnya secara acak tanpa menuju arah yang jelas. Galaksi-galaksi mirip ini kandungan debu antarbintangnya sangat sedikit atau malah tidak ada; kawasan penghasil bintangnya tidak banyak; dan rata-rata penghuninya bintang-bintang yang sudah tua. Biasanya galaksi elips ditemukan pada adegan inti formasi galaksi, dan bisa terlahir melalui peleburan galaksi-galaksi besar.
Galaksi spiral membentuk cakram gepeng yang berotasi, biasanya dengan tonjolan atau batangan pada adegan tengah dan lengan-lengan spiral cemerlang yang timbul dari adegan tersebut. Lengan-lengan ini ialah lapangan berdebu tempat lahirnya bintang-bintang baru, dan penghuninya ialah bintang-bintang muda yang bermassa besar dan berpijar biru. Umumnya, galaksi spiral akan dikelilingi oleh cincin yang tersusun atas bintang-bintang yang lebih tua. Contoh galaksi semacam ini ialah Bima Sakti dan Andromeda.
Galaksi-galaksi tak beraturan bentuknya kacau dan tidak ibarat berdiri tertentu mirip spiral atau elips. Kira-kira seperempat dari galaksi-galaksi tergolong tak beraturan, barangkali disebabkan oleh interaksi gravitasi.
Sebuah galaksi dikatakan aktif apabila memancarkan jumlah energi yang signifikan dari sumber selain bintang-bintang, debu, atau gas; juga, apabila sumber tenaganya berasal dari kawasan padat di sekitar inti — kemungkinan sebuah lubang hitam supermasif yang memancarkan radiasi benda-benda yang ia telan.
Apabila sebuah galaksi aktif mempunyai radiasi spektrum radio yang sangat terang serta memancarkan jalaran gas dalam jumlah besar, maka galaksi tersebut tergolong galaksi radio. Contoh galaksi mirip ini ialah galaksi-galaksi Seyfert, kuasar, dan blazar. Kuasar kini diyakini sebagai benda yang paling sanggup dipastikan sangat cemerlang; tidak pernah ditemukan spesimen yang redup.
Struktur skala besar dari alam semesta kini digambarkan sebagai kumpulan dari grup-grup dan gugusan-gugusan galaksi. Struktur ini diklasifikasi lagi dalam sebuah hierarki pengelompokan; yang terbesar ialah maha-gugusan (supercluster). Kemudian kelompok-kelompok ini disusun menjadi filamen-filamen dan dinding-dinding galaksi, dengan kehampaan di antara mereka.
Pengamatan atas struktur skala besar alam semesta, yaitu cabang yang dikenal sebagai kosmologi fisik, telah menyumbangkan pemahaman yang mendalam wacana formasi dan evolusi jagat raya. Salah satu teori yang paling penting (dan sudah diterima luas) ialah teori Dentuman Besar, yang menyatakan bahwa dunia bermula pada satu titik dan mengembang selama 13,7 miliar tahun hingga ke masa sekarang. Gagasan ini bisa dilacak kembali pada penemuan radiasi latar belakang gelombang mikro kosmis pada tahun 1965.
Selama proses pengembangan ini, alam telah mengalami beberapa tingkat evolusi. Pada awalnya, diduga bahwa terdapat inflasi kosmik yang sangat cepat, menimbulkan homogenisasi pada kondisi-kondisi awal. Setelah itu melalui nukleosintesis dihasilkan ketersediaan unsur-unsur untuk periode awal alam semesta. (Lihat juga nukleokosmokronologi.)
Ketika atom-atom pertama bermunculan, antariksa menjadi transparan terhadap radiasi, melepaskan energi yang kini dikenal sebagai radiasi CMB. Alam semesta yang tengah mengembang pun memasuki Zaman Kegelapan, lantaran tidak ada sumber daya bintang yang bisa memancarkan cahaya.
Susunan materi yang hierarkis mulai terbentuk lewat variasi-variasi kecil pada massa jenis. Materi kemudian terhimpun pada daerah-daerah dengan massa jenis yang paling tinggi, melahirkan awan-awan gas dan bintang-bintang yang paling purba (metalisitas III). Bintang-bintang besar ini memicu proses reionisasi dan dipercaya telah membuat banyak unsur-unsur berat pada alam semesta dini; unsur-unsur ini cenderung meluruh kembali menjadi unsur-unsur yang lebih ringan, memperpanjang siklus.
Pengumpulan yang dipicu oleh gravitasi menimbulkan materi membentuk filamen-filamen dan menyisakan ruang-ruang hampa di antaranya. Lambat laun, gas dan debu melebur dan membentuk galaksi-galaksi primitif. Lama-kelamaan semakin banyak materi yang ditarik, dan tersusun menjadi grup dan formasi galaksi. Pada akhirnya, maha-gugusan yang lebih besar pun terwujud.
Benda-benda lain yang memegang peranan penting dalam struktur alam semesta ialah materi gelap dan energi gelap. Benda-benda inilah yang ternyata merupakan komponen utama dunia kita, di mana massa mereka mencapai 96% dari massa keseluruhan alam semesta. Oleh lantaran itu, upaya-upaya terus dibentuk untuk meneliti dan memahami segi fisika benda-benda ini.
Ada juga cabang yang meneliti zat-zat kimia yang ditemukan di luar angkasa; bagaimana mereka terwujud, berperilaku, dan terhancurkan. Ini dinamakan astrokimia. Zat-zat yang hendak dipelajari biasanya ditemukan pada awan molekul, walau ada juga yang terdapat di bintang bersuhu rendah, katai coklat, atau planet. Lalu kosmokimia, ilmu serupa yang lebih mengarah ke penelitian unsur-unsur dan variasi-variasi rasio isotop pada Tata Surya. Ilmu-ilmu ini bisa menggambarkan persinggungan dari ilmu-ilmu astronomi dan kimia. Bahkan kini ada astronomi forensik, di mana metode-metode astronomi digunakan untuk memecahkan masalah-masalah aturan dan sejarah.
Sebagaimana disebutkan, astronomi ialah salah satu dari sedikit cabang ilmu di mana tenaga amatir sanggup berkontribusi banyak. Secara keseluruhan, astronom-astronom amatir mengamati banyak sekali benda dan fenomena angkasa, terkadang bahkan dengan peralatan yang mereka buat sendiri. Yang jamak diamati yaitu Bulan, planet, bintang, komet, hujan meteor, dan benda-benda langit dalam mirip formasi bintang, galaksi, dan nebula. Salah satu cabang astronomi amatir ialah astrofotografi amatir, yang melibatkan mengambilan foto-foto langit malam. Banyak yang menentukan menjadi astrofotografer yang berspesialis dalam obyek atau kejadian tertentu.
Kebanyakan astronom amatir bekerja dalam astronomi optikal, walau sebagian kecil ada juga yang mencoba bereksperimen dengan panjang gelombang di luar cahaya tampak, contohnya dengan penyaring inframerah pada teleskop biasa, atau penggunaan teleskop radio. Pelopor radio astronomi amatir ialah Karl Jansky, yang memulai kegiatan ini pada dekade 1930-an. Amatir jenis mirip Jansky ini menggunakan teleskop buatan sendiri atau teleskop radio profesional yang kini sudah boleh diakses oleh amatir mirip halnya Teleskop Satu Mil (One-Mile Telescope).
Sumbangsih astronom amatir tidak sepele, lantaran banyak hal — mirip pengkuran okultasi guna mempertajam catatan garis edar planet-planet kecil — bergantung pada pekerjaan astronomi amatir. Para amatir sanggup pula menemukan komet atau melaksanakan penelitian rutin atas bintang-bintang variabel. Seiring dengan perkembangan teknologi digital, astrofotografi amatir juga semakin efektif dan semakin ulet menawarkan dukungan ilmu.
Terbentuknya planet-planet bermula pada sebuah cakram protoplanet yang mengitari Matahari pada periode-periode awalnya. Dari cakram ini terwujudlah gumpalan-gumpalan materi melalui proses yang melibatkan tarikan gravitasi, benturan, dan akresi; gumpalan-gumpalan ini kemudian lama-kelamaan menjadi kumpulan protoplanet. Karena tekanan radiasi dari angin surya terus mendorong materi-materi yang belum menggumpal, hanya planet-planet yang massanya cukup besar yang bisa mempertahankan atmosfer berbentuk gas. Planet-planet muda ini terus menyapu dan memuntahkan materi-materi yang tersisa, menghasilkan sebuah periode penghancuran yang hebat. Sisa-sisa periode ini bisa dilihat melalui banyaknya kawah-kawah gesekan di permukaan Bulan. Adapun dalam jangka waktu ini sebagian dari protoplanet-protoplanet yang ada mungkin bertabrakan satu sama lain; kemungkinan besar gesekan mirip itulah yang melahirkan Bulan kita.
Ketika suatu planet mencapai massa tertentu, materi-materi dengan massa jenis yang berlainan mulai saling memisahkan diri dalam proses yang disebut diferensiasi planet. Proses demikian bisa menghasilkan inti yang berbatu-batu atau terdiri dari materi-materi logam, diliputi oleh lapisan mantel dan kemudian permukaan luar. Inti planet ini bisa terbagi menjadi daerah-daerah yang padat dan cair, dan beberapa bisa menghasilkan medan magnet mereka sendiri, sehingga planet sanggup terlindungi dari angin surya.
Panas di adegan dalam sebuah planet atau bulan tiba dari benturan yang dihasilkan sendiri oleh planet/bulan tersebut, atau oleh materi-materi radioaktif (misalnya uranium, torium, atau 26Al), atau pemanasan pasang surut. Beberapa planet dan bulan berhasil mengumpulkan cukup panas untuk menjalankan proses-proses geologis mirip vulkanisme dan aktivitas-aktivitas tektonik. Apabila planet/bulan tersebut juga mempunyai atmosfer, maka abrasi pada permukaan (melalui angin atau air) juga sanggup terjadi. Planet/bulan yang lebih kecil dan tanpa pemanasan pasang surut akan menjadi hambar lebih cepat dan kegiatan-kegiatan geologisnya akan berakhir, terkecuali pembentukan kawah-kawah tabrakan.
Astronomi bintang
Nebula Semut. Gas yang dimuntahkan dari bintang sekarat di tengahnya tidak biasa lantaran membentuk pola yang simetris, bukan semrawut mirip ledakan pada umumnya. |
Bintang terbentuk pada awan-awan molekul raksasa, yaitu daerah-daerah yang padat akan debu dan gas. Ketika kehilangan kestabilannya, serpihan-serpihan dari awan-awan ini bisa runtuh di bawah gaya gravitasi dan membentuk protobintang. Apabila adegan pada dasarnya mencapai kepadatan dan suhu tertentu, fusi nuklir akan dipicu dan akan terbentuklah sebuah bintang deret utama.
Nyaris semua unsur yang lebih berat dari hidrogen dan helium merupakan hasil dari proses yang terjadi di dalam inti bintang-bintang.
Ciri-ciri yang akan dimiliki oleh suatu bintang secara garis besar ditentukan oleh massa awalnya: semakin besar massanya, maka semakin tinggi pula luminositasnya, dan semakin cepat pula ia akan menghabiskan materi bakar hidrogen pada inti. Lambat laun, materi bakar hidrogen ini akan diubah menjadi helium, dan bintang yang bersangkutan akan mulai berevolusi. Untuk melaksanakan fusi helium, dibutuhkan suhu inti yang lebih tinggi, oleh lantaran itu pada dasarnya akan semakin padat dan ukuran bintang pun berlipat ganda — bintang ini telah menjadi sebuah raksasa merah. Fase raksasa merah ini relatif singkat, hingga materi bakar heliumnya juga sudah habis terpakai. Kalau bintang tersebut mempunyai massa yang sangat besar, maka akan dimulai fase-fase evolusi di mana ia semakin mengecil secara bertahap, lantaran terpaksa melaksanakan fusi nuklir terhadap unsur-unsur yang lebih berat.
Adapun nasib simpulan sebuah bintang bergantung pula pada massa. Jika massanya lebih dari sekitar delapan kali lipat Matahari kita, maka gravitasi pada dasarnya akan runtuh dan menghasilkan sebuah supernova; kalau tidak, akan menjadi nebula planet, dan terus berevolusi menjadi sebuah katai putih. Yang tersisa sehabis supernova meletus ialah sebuah bintang neutron yang sangat padat, atau, apabila materi sisanya mencapai tiga kali lipat massa Matahari, lubang hitam. Bintang-bintang biner yang saling berdekatan evolusinya bisa lebih rumit lagi, misalnya, bisa terjadi pemindahan massa ke arah bintang rekannya yang sanggup mengakibatkan supernova.
Nebula-nebula planet dan supernova-supernova dibutuhkan untuk proses distribusi logam di medium antarbintang; kalau tidak demikian, seluruh bintang-bintang gres (dan juga sistem-sistem planet mereka) hanya akan tersusun dari hidrogen dan helium saja.
Astronomi galaksi
Struktur lengan-lengan spiral Bima Sakti yang sudah teramati. |
Pada sentra galaksi ialah adegan inti, semacam tonjolan berbentuk mirip batang; diyakini bahwa terdapat sebuah lubang hitam supermasif di adegan sentra ini. Bagian ini dikelilingi oleh empat lengan utama yang melingkar dari tengah menuju arah luar, dan isinya kaya akan fenomena-fenomena pembentukan bintang, sehingga memuat banyak bintang-bintang muda (metalisitas populasi I). Cakram ini kemudian diliputi oleh cincin galaksi yang berisi bintang-bintang yang lebih bau tanah (metalisitas populasi II) dan juga gugusan-gugusan bintang berbentuk bola (globular), yaitu semacam kumpulan-kumpulan bintang yang relatif lebih padat.
Daerah di antara bintang-bintang disebut medium antarbintang, yaitu kawasan dengan kandungan materi yang jarang — bagian-bagiannya yang relatif terpadat ialah awan-awan molekul berisi hidrogen dan unsur lainnya, tempat di mana banyak bintang gres akan lahir. Awalnya akan terbentuk sebuah inti pra-bintang atau nebula gelap yang merapat dan kemudian runtuh (dalam volume yang ditentukan oleh panjang Jeans) untuk membangun protobintang.
Ketika sudah banyak bintang besar yang muncul, mereka akan mengubah awan molekul menjadi awan kawasan H II, yaitu awan dengan gas berpijar dan plasma. Pada alhasil angin serta ledakan supernova yang berasal dari bintang-bintang ini akan memencarkan awan yang tersisa, biasanya menghasilkan sebuah (atau lebih dari satu) formasi bintang terbuka yang baru. Gugusan-gugusan ini lambat laun berpendar, dan bintang-bintangnya bergabung dengan Bima Sakti.
Sejumlah penelitian kinematika berkenaan dengan materi-materi di Bima Sakti (dan galaksi lainnya) memperlihatkan bahwa materi-materi yang tampak massanya kurang dari massa seluruh galaksi. Ini menunjukan terdapat apa yang disebut materi gelap yang bertanggung jawab atas sebagian besar massa keseluruhan, tapi banyak hal yang belum diketahui mengenai materi misterius ini.
Astronomi ekstragalaksi
Citra di atas menampilkan beberapa benda biru berbentuk lingkaran; ini ialah gambar-gambar dari galaksi yang sama, tergandakan oleh imbas lensa gravitasional yang disebabkan oleh formasi galaksi-galaksi kuning pada adegan tengah foto. Efek lensa itu dihasilkan medan gravitasi formasi dan membelokkan cahaya sehingga gambar salah satu benda yang lebih jauh diperbesar dan terdistorsi. |
Penelitian benda-benda yang berada di luar galaksi kita — astronomi ekstragalaksi — merupakan cabang yang mempelajari formasi dan evolusi galaksi-galaksi, morfologi dan penjabaran mereka, serta pengamatan atas galaksi-galaksi aktif beserta grup-grup dan gugusan-gugusan galaksi. Ini, terutama yang disebutkan belakangan, penting untuk memahami struktur alam semesta dalam skala besar.
Kebanyakan galaksi akan membentuk wujud-wujud tertentu, sehingga pengklasifikasiannya bisa disusun berdasarkan wujud-wujud tersebut. Biasanya, mereka dibagi-bagi menjadi galaksi-galaksi spiral, elips, dan tak beraturan.
Persis mirip namanya, galaksi elips berbentuk mirip elips. Bintang-bintang berputar pata garis edarnya secara acak tanpa menuju arah yang jelas. Galaksi-galaksi mirip ini kandungan debu antarbintangnya sangat sedikit atau malah tidak ada; kawasan penghasil bintangnya tidak banyak; dan rata-rata penghuninya bintang-bintang yang sudah tua. Biasanya galaksi elips ditemukan pada adegan inti formasi galaksi, dan bisa terlahir melalui peleburan galaksi-galaksi besar.
Galaksi spiral membentuk cakram gepeng yang berotasi, biasanya dengan tonjolan atau batangan pada adegan tengah dan lengan-lengan spiral cemerlang yang timbul dari adegan tersebut. Lengan-lengan ini ialah lapangan berdebu tempat lahirnya bintang-bintang baru, dan penghuninya ialah bintang-bintang muda yang bermassa besar dan berpijar biru. Umumnya, galaksi spiral akan dikelilingi oleh cincin yang tersusun atas bintang-bintang yang lebih tua. Contoh galaksi semacam ini ialah Bima Sakti dan Andromeda.
Galaksi-galaksi tak beraturan bentuknya kacau dan tidak ibarat berdiri tertentu mirip spiral atau elips. Kira-kira seperempat dari galaksi-galaksi tergolong tak beraturan, barangkali disebabkan oleh interaksi gravitasi.
Sebuah galaksi dikatakan aktif apabila memancarkan jumlah energi yang signifikan dari sumber selain bintang-bintang, debu, atau gas; juga, apabila sumber tenaganya berasal dari kawasan padat di sekitar inti — kemungkinan sebuah lubang hitam supermasif yang memancarkan radiasi benda-benda yang ia telan.
Apabila sebuah galaksi aktif mempunyai radiasi spektrum radio yang sangat terang serta memancarkan jalaran gas dalam jumlah besar, maka galaksi tersebut tergolong galaksi radio. Contoh galaksi mirip ini ialah galaksi-galaksi Seyfert, kuasar, dan blazar. Kuasar kini diyakini sebagai benda yang paling sanggup dipastikan sangat cemerlang; tidak pernah ditemukan spesimen yang redup.
Struktur skala besar dari alam semesta kini digambarkan sebagai kumpulan dari grup-grup dan gugusan-gugusan galaksi. Struktur ini diklasifikasi lagi dalam sebuah hierarki pengelompokan; yang terbesar ialah maha-gugusan (supercluster). Kemudian kelompok-kelompok ini disusun menjadi filamen-filamen dan dinding-dinding galaksi, dengan kehampaan di antara mereka.
Kosmologi
Kosmologi, berasal dari bahasa Yunani kosmos (κόσμος, "dunia") dan akhiran -logia dari logos (λόγος, "pembelajaran") sanggup dipahami sebagai upaya meneliti alam semesta secara keseluruhan.Pengamatan atas struktur skala besar alam semesta, yaitu cabang yang dikenal sebagai kosmologi fisik, telah menyumbangkan pemahaman yang mendalam wacana formasi dan evolusi jagat raya. Salah satu teori yang paling penting (dan sudah diterima luas) ialah teori Dentuman Besar, yang menyatakan bahwa dunia bermula pada satu titik dan mengembang selama 13,7 miliar tahun hingga ke masa sekarang. Gagasan ini bisa dilacak kembali pada penemuan radiasi latar belakang gelombang mikro kosmis pada tahun 1965.
Selama proses pengembangan ini, alam telah mengalami beberapa tingkat evolusi. Pada awalnya, diduga bahwa terdapat inflasi kosmik yang sangat cepat, menimbulkan homogenisasi pada kondisi-kondisi awal. Setelah itu melalui nukleosintesis dihasilkan ketersediaan unsur-unsur untuk periode awal alam semesta. (Lihat juga nukleokosmokronologi.)
Ketika atom-atom pertama bermunculan, antariksa menjadi transparan terhadap radiasi, melepaskan energi yang kini dikenal sebagai radiasi CMB. Alam semesta yang tengah mengembang pun memasuki Zaman Kegelapan, lantaran tidak ada sumber daya bintang yang bisa memancarkan cahaya.
Susunan materi yang hierarkis mulai terbentuk lewat variasi-variasi kecil pada massa jenis. Materi kemudian terhimpun pada daerah-daerah dengan massa jenis yang paling tinggi, melahirkan awan-awan gas dan bintang-bintang yang paling purba (metalisitas III). Bintang-bintang besar ini memicu proses reionisasi dan dipercaya telah membuat banyak unsur-unsur berat pada alam semesta dini; unsur-unsur ini cenderung meluruh kembali menjadi unsur-unsur yang lebih ringan, memperpanjang siklus.
Pengumpulan yang dipicu oleh gravitasi menimbulkan materi membentuk filamen-filamen dan menyisakan ruang-ruang hampa di antaranya. Lambat laun, gas dan debu melebur dan membentuk galaksi-galaksi primitif. Lama-kelamaan semakin banyak materi yang ditarik, dan tersusun menjadi grup dan formasi galaksi. Pada akhirnya, maha-gugusan yang lebih besar pun terwujud.
Benda-benda lain yang memegang peranan penting dalam struktur alam semesta ialah materi gelap dan energi gelap. Benda-benda inilah yang ternyata merupakan komponen utama dunia kita, di mana massa mereka mencapai 96% dari massa keseluruhan alam semesta. Oleh lantaran itu, upaya-upaya terus dibentuk untuk meneliti dan memahami segi fisika benda-benda ini.
Penelitian-penelitian interdisipliner
Astronomi dan astrofisika telah mengambangkan relasi yang berpengaruh dengan cabang-cabang ilmu pengetahuan lainnya. Misalnya arkeoastronomi, yang mempelajari astronomi kuno atau tradisional dalam konteks budaya masing-masing mempergunakan bukti-bukti arkeologis dan antropologis. Atau astrobiologi, kali ini mempelajari kelahiran dan perkembangan sistem-sistem biologis di alam semesta; terutama sekali pada topik kehidupan di planet lain.Ada juga cabang yang meneliti zat-zat kimia yang ditemukan di luar angkasa; bagaimana mereka terwujud, berperilaku, dan terhancurkan. Ini dinamakan astrokimia. Zat-zat yang hendak dipelajari biasanya ditemukan pada awan molekul, walau ada juga yang terdapat di bintang bersuhu rendah, katai coklat, atau planet. Lalu kosmokimia, ilmu serupa yang lebih mengarah ke penelitian unsur-unsur dan variasi-variasi rasio isotop pada Tata Surya. Ilmu-ilmu ini bisa menggambarkan persinggungan dari ilmu-ilmu astronomi dan kimia. Bahkan kini ada astronomi forensik, di mana metode-metode astronomi digunakan untuk memecahkan masalah-masalah aturan dan sejarah.
Astronomi amatir
Astronom amatir bisa membangun peralatan mereka sendiri dan menyelenggarakan pesta-pesta dan pertemuan astronomi, contohnya komunitas Stellafane. |
Kebanyakan astronom amatir bekerja dalam astronomi optikal, walau sebagian kecil ada juga yang mencoba bereksperimen dengan panjang gelombang di luar cahaya tampak, contohnya dengan penyaring inframerah pada teleskop biasa, atau penggunaan teleskop radio. Pelopor radio astronomi amatir ialah Karl Jansky, yang memulai kegiatan ini pada dekade 1930-an. Amatir jenis mirip Jansky ini menggunakan teleskop buatan sendiri atau teleskop radio profesional yang kini sudah boleh diakses oleh amatir mirip halnya Teleskop Satu Mil (One-Mile Telescope).
Sumbangsih astronom amatir tidak sepele, lantaran banyak hal — mirip pengkuran okultasi guna mempertajam catatan garis edar planet-planet kecil — bergantung pada pekerjaan astronomi amatir. Para amatir sanggup pula menemukan komet atau melaksanakan penelitian rutin atas bintang-bintang variabel. Seiring dengan perkembangan teknologi digital, astrofotografi amatir juga semakin efektif dan semakin ulet menawarkan dukungan ilmu.
Daftar duduk masalah astronomi yang belum terpecahkan
Meskipun sebagai ilmu pengetahuan astronomi telah mengalami kemajuan-kemajuan yang sangat pesat dan membuat terobosan-terobosan yang sangat besar dalam upaya memahami alam semesta dan segala isinya, masih ada beberapa pertanyaan penting yang belum bisa terjawab. Untuk memecahkan permasalahan mirip ini, boleh jadi dibutuhkan pembangunan peralatan-peralatan gres baik di permukaan Bumi maupun di antariksa. Selain itu, mungkin juga dibutuhkan perkembangan gres dalam fisika teoretis dan eksperimental.- Apakah asal undangan spektrum massa bintang? Maksudnya, mengapa astronom terus mengamati persebaran massa yang sama — yaitu, fungsi massa awal yang sama — walaupun keadaan awal terwujudnya bintang-bintang berbeda-beda? Diperlukan pemahaman yang lebih dalam akan pembentukan bintang dan planet.
- Adakah wujud kehidupan lain di alam semesta? Adakah wujud kehidupan cerdas lain di alam semesta? Kalau ada, apa jawaban dari paradoks Fermi? Apabila ada kehidupan lain di luar Bumi, implikasinya, baik ilmiah maupun filosofis, sangat penting. Apakah Tata Surya kita termasuk normal ataukah ternyata tidak biasa?
- Apa yang mengakibatkan terbentuknya alam semesta? Apakah premis yang melandasi hipotesis "alam semesta yang tertala dengan baik" (fine-tuned universe) tepat? Apabila tepat, apakah ada semacam seleksi alam dalam skala kosmologis? Apa bahwasanya yang mengakibatkan inflasi kosmik dini, sehingga alam menjadi homogen? Kenapa terdapat asimetri barion di alam semesta?
- Apa hakikat bahwasanya dari materi gelap dan energi gelap? Mereka telah mendominasi proses perkembangan dan, pada akhirnya, nasib dari jagat raya, tapi sifat-sifat mendasar mereka tetap belum dipahami. Apa yang akan terjadi di penghujung waktu?
- Bagaimana galaksi-galaksi pertama terbentuk? Bagaimana lubang-lubang hitam supermasif terbentuk?
- Apa yang menghasilkan sinar kosmik berenergi ultra-tinggi?
0 Comment
Posting Komentar